

VIDYA BHAWAN, BALIKA VIDYAPITH

Shakti Utthan Ashram, Lakhisarai-811311(Bihar)

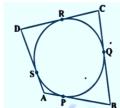
(Affiliated to CBSE up to +2 Level)

Class: 10th Subject: Mathematics Date: 17.11.2020

EXERCISE 10.2

Q.8. A quadrilateral ABCD is drawn to circumscribe a circle (see figure). Prove that: AB + CD = AD + BC

Sol. Since the sides of quadrilateral ABCD, i.e., AB, BC, CD and DA touch the circle at P, Q, R and S respectively, and the lengths of two tangents to a circle from an external point are equal.



AP = AS

BP = BQ

DR = DS

CR = CQ

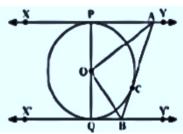
Adding them, we get

$$(AP + BP) + (CR + RD) = (BQ + QC) + (DS + SA)$$

$$\Rightarrow$$
 AB + CD = BC + DA

which was to be proved.

Q.9. In the figure, XY and X'Y'are two parallel tangents to a circle with centre 0 and another tangent AB with point of contact C intersecting XY at A and XY' at B. Prove that ZAOB = W.



Sol. :The tangents drawn to a circle from an external point are equal.

$$\therefore AP = AC$$

In \triangle PAO and \triangle AOC, we have:

AO = AO

[Common]

OP = OC

[Radii of the same circle]

AP = AC

 $\Rightarrow \Delta PAO \cong \Delta AOC$

∴∠PAO = ∠CAO

$$\angle PAC = 2 \angle CAO$$
 ...(1)
Similarly $\angle CBQ = 2 \angle CBO$...(2)

Again, we know that sum of internal angles on the same side of a transversal is 180°.

$$\therefore \angle PAC + \angle CBQ = 180^{\circ}$$

$$\Rightarrow$$
 2 \angle CAO + 2 \angle CBO = 180°

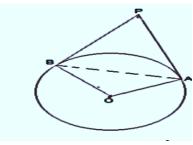
[From (1) and (2)]

$$\Rightarrow$$
 90° + \angle AOB = 180°

$$\Rightarrow$$
 LAOB = 90°.

Q.10. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

Sol. Here, let PA and PB be two tangents drawn from an external point P to a circle with centre O.



Now, in right Δ OAP and right Δ OBP, we have

PA = PB

[Tangents to circle from an external point P]

OA = OB

[Radii of the same circle]

OP = OP

[Comm]

∴ By SSS congruency,

$$\Delta OAP \cong OBP$$

: Their corresponding parts are equal.

$$\angle OAA = \angle OPB$$

And
$$\angle AOP = \angle BOP$$

$$\Rightarrow \angle APB = 2 \angle OPA$$
 and $\angle AOS = 2 \angle AOP$

But
$$\angle AOP = 90^{\circ} - LOPA$$

$$\Rightarrow$$
 2 \angle AOP = 180° - 2 \angle OPA

$$\Rightarrow \angle AOB + \angle APB = 180^{\circ}$$
.